Adjunction formula (algebraic geometry)
In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.
Adjunction for smooth varieties
Formula for a smooth subvariety
Let X be a smooth algebraic variety or smooth complex manifold and Y be a smooth subvariety of X. Denote the inclusion map Y → X by i and the ideal sheaf of Y in X by . The conormal exact sequence for i is
where Ω denotes a cotangent bundle. The determinant of this exact sequence is a natural isomorphism
where denotes the dual of a line bundle.
The particular case of a smooth divisor
Suppose that D is a smooth divisor on X. Its normal bundle extends to a line bundle on X, and the ideal sheaf of D corresponds to its dual . The conormal bundle is , which, combined with the formula above, gives
- .
In terms of canonical classes, this says that
Both of these two formulas are called the adjunction formula.
Poincaré residue
The restriction map is called the Poincaré residue. Suppose that X is a complex manifold. Then on sections, the Poincaré residue can be expressed as follows. Fix an open set U on which D is given by the vanishing of a function f. Any section over U of can be written as s/f, where s is a holomorphic function on U. Let η be a section over U of ωX. The Poincaré residue is the map
that is, it is formed by applying the vector field ∂/∂f to the volume form η, then multiplying by the holomorphic function s. If U admits local coordinates z1, ..., zn such that for some i, ∂f/∂zi ≠ 0, then this can also be expressed as
Another way of viewing Poincaré residue first reinterprets the adjunction formula as an isomorphism
On an open set U as before, a section of is the product of a holomorphic function s with the form df/f. The Poincaré residue is the map that takes the wedge product of a section of ωD and a section of .
Inversion of adjunction
The adjunction formula is false when the conormal exact sequence is not a short exact sequence. However, it is possible to use this failure to relate the singularities of X with the singularities of D. Theorems of this type are called inversion of adjunction. They are an important tool in modern birational geometry.
Applications to curves
- The genus-degree formula for plane curves can be deduced from the adjunction formula[1]. Let C ⊂ P2 be a smooth plane curve of degree d and genus g. Let H be the class of a hypersurface in P2, that is, the class of a line. The canonical class of P2 is −3H. Consequently, the adjunction formula says that the restriction of (d − 3)H to C equals the canonical class of C. This restriction is the same as the intersection product (d − 3)H · dH restricted to C, and so the degree of the canonical class of C is d(d − 3). By the Riemann–Roch theorem, g − 1 = (d − 3)d − g + 1, which implies the formula
- Similarly[2], if C is a smooth curve on the quadric surface P1×P1 with bidegree (d1,d2) (meaning d1,d2 are its intersection degrees with a fiber of each projection to P1), since the canonical class of P1×P1 has bidegree (−2,−2), the adjunction formula shows that the canonical class of C is the intersection product of divisors of bidegrees (d1,d2) and (d1−2,d2−2). The intersection form on P1×P1 is by definition of the bidegree and by bilinearity, so applying Riemman–Roch gives or
- The genus of a curve C which is the complete intersection of two surfaces D and E in P3 can also be computed using the adjunction formula. Suppose that d and e are the degrees of D and E, respectively. Applying the adjunction formula to D shows that its canonical divisor is (d − 4)H, which is the intersection product of (d − 4)H and D. Doing this again with E, which is possible because C is a complete intersection, shows that the canonical divisor C is the product (d + e − 4)H · dH · eH, that is, it has degree de(d + e − 4). By the Riemann–Roch theorem, this implies that the genus of C is
See Also
Logarithmic form
References
- ^ Hartshorne, chapter V, example 1.5.1
- ^ Hartshorne, chapter V, example 1.5.2
- Phillip Griffiths; Joe Harris (1994). Principles of Algebraic Geometry. Wiley-Interscience. ISBN 0-471-05059-8.
- Intersection theory 2nd edition, William Fulton, Springer, ISBN 0-387-98549-2, Example 3.2.12.
- Principles of algebraic geometry, Griffiths and Harris, Wiley classics library, ISBN 0-471-05059-8 pp 146–147.
- Algebraic geometry, Robin Hartshorne, Springer GTM 52, ISBN 0-387-90244-9, Proposition II.8.20.